咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Obstacle Avoidance in Multi-Ag... 收藏

Obstacle Avoidance in Multi-Agent Formation Process Based on Deep Reinforcement Learning

作     者:JI Xiukun HAI Jintao LUO Wenguang LIN Cuixia XIONG Yu OU Zengkai WEN Jiayan 冀秀坤;海金涛;罗文广;林翠霞;熊禹;殴增开;文家燕

作者机构:Guangxi Key Laboratory of Auto Parts and Vehicle TechnologySchool of Electrical and Information EngineeringGuangxi University of Science and TechnologyLiuzhou 545006GuangxiChina Technology Center of Dongfeng Liuzhou Automobile Co.Ltd.Liuzhou 545000GuangxiChina 

出 版 物:《Journal of Shanghai Jiaotong university(Science)》 (上海交通大学学报(英文版))

年 卷 期:2021年第26卷第5期

页      面:680-685页

核心收录:

学科分类:0711[理学-系统科学] 07[理学] 08[工学] 070105[理学-运筹学与控制论] 081101[工学-控制理论与控制工程] 071101[理学-系统理论] 0811[工学-控制科学与工程] 0701[理学-数学] 

基  金:the National Natural Science Foun-dation of China(No.61963006) the Nat-ural Science Foundation of Guangxi Province(Nos.2020GXNSFDA238011,2018GXNSFAA050029,and 2018GXNSFAA294085) 

主  题:wheelbarrow multi-agent deep reinforcement learning(DRL) formation obstacle avoidance 

摘      要:To solve the problems of difficult control law design,poor portability,and poor stability of traditional multi-agent formation obstacle avoidance algorithms,a multi-agent formation obstacle avoidance method based on deep reinforcement learning(DRL)is *** method combines the perception ability of convolutional neural networks(CNNs)with the decision-making ability of reinforcement learning in a general form and realizes direct output control from the visual perception input of the environment to the action through an end-to-end learning *** multi-agent system(MAS)model of the follow-leader formation method was designed with the wheelbarrow as the control *** improved deep Q netwrok(DQN)algorithm(we improved its discount factor and learning efficiency and designed a reward value function that considers the distance relationship between the agent and the obstacle and the coordination factor between the multi-agents)was designed to achieve obstacle avoidance and collision avoidance in the process of multi-agent formation into the desired *** simulation results show that the proposed method achieves the expected goal of multi-agent formation obstacle avoidance and has stronger portability compared with the traditional algorithm.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分