咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Geometry of time-dependent PT-... 收藏

Geometry of time-dependent PT-symmetric quantum mechanics

Geometry of time-dependent PT-symmetric quantum mechanics

作     者:Da-Jian Zhang Qing-hai Wang Jiangbin Gong 张大剑;王清海;龚江滨

作者机构:Department of PhysicsShandong UniversityJinan 250100China Department of PhysicsNational University of Singapore117551Singapore 

出 版 物:《Chinese Physics B》 (中国物理B(英文版))

年 卷 期:2021年第30卷第10期

页      面:47-55页

核心收录:

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 07[理学] 070205[理学-凝聚态物理] 08[工学] 0702[理学-物理学] 

基  金:supported by Singapore Ministry of Education Academic Research Fund Tier I(WBS No.R-144-000-353-112) by the Singapore NRF Grant No.NRFNRFI2017-04(WBS No.R-144-000-378-281) supported by Singapore Ministry of Education Academic Research Fund Tier I(WBS No.R-144-000-352-112) 

主  题:time-dependent𝒫PT-symmetric quantum mechanics geometry time-varying inner product unconventional geometric phase 

摘      要:A new type of quantum theory known as time-dependent𝒫PT-symmetric quantum mechanics has received much attention *** has a conceptually intriguing feature of equipping the Hilbert space of a𝒫PT-symmetric system with a time-varying inner *** this work,we explore the geometry of time-dependent𝒫𝒯PT-symmetric quantum *** find that a geometric phase can emerge naturally from the cyclic evolution of a PT-symmetric system,and further formulate a series of related differential-geometry concepts,including connection,curvature,parallel transport,metric tensor,and quantum geometric *** findings constitute a useful,perhaps indispensible,tool to investigate geometric properties of𝒫PT-symmetric systems with time-varying system’s *** exemplify the application of our findings,we show that the unconventional geometric phase[***.91187902(2003)],which is the sum of a geometric phase and a dynamical phase proportional to the geometric phase,can be expressed as a single geometric phase unveiled in this work.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分