Composite Quantile Estimation in Partial Functional Linear Regression Model Based on Polynomial Spline
在基于多项式花键的部分功能的线性回归模型的合成 Quantile 评价作者机构:School of Mathematics and Computer ScienceShanxi Normal UniversityLinfen 041000P.R.China School of Statistics and ManagementShanghai University of Finance and EconomicsShanghai 200433P.R.China Department of StatisticsFudan UniversityShanghai 200433P.R.China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2021年第37卷第10期
页 面:1627-1644页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China(Grant Nos.11671096,11690013,11731011 and 12071267) the Natural Science Foundation of Shanxi Province,China(Grant No.201901D111279)
主 题:Asymptotic normality composite quantile regression functional data analysis polynomial spline rates of convergence
摘 要:In this paper,we consider composite quantile regression for partial functional linear regression model with polynomial spline *** some mild conditions,the convergence rates of the estimators and mean squared prediction error,and asymptotic normality of parameter vector are *** studies demonstrate that the proposed new estimation method is robust and works much better than the least-squares based method when there are outliers in the dataset or the random error follows heavy-tailed ***,we apply the proposed methodology to a spectroscopic data sets to illustrate its usefulness in practice.