咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >On the fractional doubly parab... 收藏

On the fractional doubly parabolic Keller-Segel system modelling chemotaxis

On the fractional doubly parabolic Keller-Segel system modelling chemotaxis

作     者:Mario Bezerra Claudio Cuevas Clessius Silva Herme Soto 

作者机构:Department of MathematicsFederal University of PernambucoRecife 50540-740Brazil Department of MathematicsRural Federal University of PernambucoRecife 52171-900Brazil Department of Mathematics and StatisticsUniversity of La FronteraTemucoCasilla 54-DChile 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2022年第65卷第9期

页      面:1827-1874页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by the National Research and Development Agency of Chile(ANID)-Chile under Fondecyt(Grant No.1181084) 

主  题:chemotaxis aggregation Keller-Segel model decay properties asymptotic profiles global solutions 

摘      要:This work is concerned with the time-fractional doubly parabolic Keller-Segel system in R^(N)(N≥1),and we derive some refined results on the large time behavior of solutions which are presupposed to enjoy some uniform boundedness ***,the well-posedness and the asymptotic stability of solutions in Marcinkiewicz spaces are *** results are achieved by means of an appropriate estimation of the system nonlinearity in the course of an analysis based on Duhamel-type representation formulae and the Kato-Fujita framework which consists in constructing a fixed-point argument by using a suitable time-dependent space.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分