咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Joint Channel and Multi-User D... 收藏

Joint Channel and Multi-User Detection Empowered with Machine Learning

作     者:Mohammad Sh.Daoud Areej Fatima Waseem Ahmad Khan Muhammad Adnan Khan Sagheer Abbas Baha Ihnaini Munir Ahmad Muhammad Sheraz Javeid Shabib Aftab 

作者机构:College of EngineeringAl Ain UniversityAbu Dhabi112612UAE Department of Computer ScienceLahore Garrison UniversityLahore54792Pakistan School of Computer ScienceNational College of Business Administration and EconomicsLahore54000Pakistan Riphah School of Computing and InnovationFaculty of ComputingRiphah International UniversityLahore54000Pakistan Pattern Recognition and Machine Learning LabDepartment of Software EngineeringGachon UniversitySeongnam13557South Korea Department of Computer ScienceCollege of Science and TechnologyWenzhou Kean University325060USA Department of Computer ScienceHameeda Rasheed Institute of Science and TechnologyMultan66000Pakistan 

出 版 物:《Computers, Materials & Continua》 (计算机、材料和连续体(英文))

年 卷 期:2022年第70卷第1期

页      面:109-121页

核心收录:

学科分类:0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 

主  题:Channel and multi-user detection minimum mean square error multiple-input and multiple-output minimum mean channel error bit error rate 

摘      要:The numbers of multimedia applications and their users increase with each passing *** multi-carrier systems have been developed along with varying techniques of space-time coding to address the demand of the future generation of network *** this article,a fuzzy logic empowered adaptive backpropagation neural network(FLeABPNN)algorithm is proposed for joint channel and multi-user detection(CMD).FLeABPNN has two *** first stage estimates the channel parameters,and the second performsmulti-user *** proposed approach capitalizes on a neuro-fuzzy hybrid systemthat combines the competencies of both fuzzy logic and neural *** study analyzes the results of using FLeABPNN based on a multiple-input andmultiple-output(MIMO)receiver with conventional partial oppositemutant particle swarmoptimization(POMPSO),total-OMPSO(TOMPSO),fuzzy logic empowered POMPSO(FL-POMPSO),and FL-TOMPSO-based MIMO *** FLeABPNN-based receiver renders better results than other techniques in terms of minimum mean square error,minimum mean channel error,and bit error rate.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分