多尺度低秩图像盲去模糊方法
Multi-Scale Low-Rank Blind Image Deblurring Method作者机构:西安交通大学软件学院西安710049
出 版 物:《西安交通大学学报》 (Journal of Xi'an Jiaotong University)
年 卷 期:2021年第55卷第9期
页 面:168-177页
核心收录:
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:图像盲去模糊 L 0范数 加权Schatte-1/2范数 广义软阈值方法
摘 要:针对现有的大多数基于统计先验的单幅图像盲去模糊方法对图像纹理细节恢复效果不佳且存在振铃效应的问题,提出了一种基于逐块局部最大梯度先验和低秩先验的多尺度图像盲去模糊方法。为了恢复得到清晰图像,采用由粗到精的多尺度框架,通过灰度化与下采样操作逐层构建图像金字塔;在单尺度层面,将逐块局部最大梯度先验和低秩先验带入到最大后验概率框架中,利用交替方向乘子法与半二次分裂法估计出潜在图像和模糊核;结合超拉普拉斯先验与总变差L 2方法,对模糊图像与估得的模糊核进行非盲反卷积,获得清晰图像。在计算过程中,由于直接求解低秩项的计算代价很大,将加权Schatte-1/2范数约束的低秩项子问题转化为非凸权重L 1/2范数子问题,采用广义软阈值方法求得全局最优解。在基准数据集上的实验结果表明:与现有的经典图像去模糊方法相比,所提方法取得了更优的图像去模糊效果;在K hler的合成数据集上进行图像去模糊后,平均峰值信噪比为30.06 dB,平均结构相似性为0.9465,估计出的模糊核更加精确。