Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake and a time delay
Qualitative analysis of a chemostat model with inhibitory exponential substrate uptake and a time delay作者机构:School of Mathematics and Computer ScienceYanan University Yanan 716000 P. R. China School of Mathematics and PhysicsUniversity of Science and Technology Beijing Beijing 100083 P. R. China
出 版 物:《International Journal of Biomathematics》 (生物数学学报(英文版))
年 卷 期:2014年第7卷第4期
页 面:185-200页
核心收录:
学科分类:07[理学] 08[工学] 070104[理学-应用数学] 0835[工学-软件工程] 0802[工学-机械工程] 0701[理学-数学] 080201[工学-机械制造及其自动化]
基 金:Science Technology Foundation of Yanan University, (YDKY201209, YDKY201314) Scientific Research and Development Program of Yanan, (2013-KG16) National Natural Science Foundation of China, NSFC, (11071013) Education Department of Shaanxi Province, (2013JK0577)
主 题:Chemostat time delay stability Lyapunov LaSalle invariance principle.
摘 要:In this paper, we consider a simple chemostat model with inhibitory exponential sub- strate uptake and a time delay. A detailed qualitative analysis about existence and boundedness of its solutions and the local asymptotic stability of its equilibria are car- ried out. Using Lyapunov-LaSalle invariance principle, we show that the washout equi- librium is global asymptotic stability for any time delay. Using the fluctuation lemma, the sufficient condition of the global asymptotic stability of the positive equilibrium E+ is obtained. Numerical simulations are also performed to illustrate the results.