A Weak Galerkin Harmonic Finite Element Method for Laplace Equation
作者机构:Department of Mathematics and StatisticsUniversity of Arkansas at Little RockLittle RockAR 72204USA Department of MathematicsUniversity of Central ArkansasConwayAR 72035USA Department of Mathematics and PhysicsTexas A&M International UniversityLaredoTX 78041USA
出 版 物:《Communications on Applied Mathematics and Computation》 (应用数学与计算数学学报(英文))
年 卷 期:2021年第3卷第3期
页 面:527-543页
核心收录:
学科分类:07[理学] 0714[理学-统计学(可授理学、经济学学位)] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学]
主 题:Harmonic polynomial Weak Galerkin finite element Laplace equation
摘 要:In this article,a weak Galerkin finite element method for the Laplace equation using the harmonic polynomial space is proposed and *** idea of using the P_(k)-harmonic polynomial space instead of the full polynomial space P_(k)is to use a much smaller number of basis functions to achieve the same accuracy when k≥*** optimal rate of convergence is derived in both H^(1)and L^(2)*** experiments have been conducted to verify the theoretical error *** addition,numerical comparisons of using the P_(2)-harmonic polynomial space and using the standard P_(2)polynomial space are presented.