Ion–solvent chemistry in lithium battery electrolytes: From mono-solvent to multi-solvent complexes
作者机构:Beijing Key Laboratory of Green Chemical Reaction Engineering and TechnologyDepartment of Chemical EngineeringTsinghua UniversityBeijing 100084China
出 版 物:《Fundamental Research》 (自然科学基础研究(英文版))
年 卷 期:2021年第1卷第4期
页 面:393-398页
基 金:This work was supported by the National Natural Science Foundation of China(21825501) Beijing Municipal Natural Science Foundation(Z20J00043) National Key Research and Development Program(2016YFA0200102) Grant 2020GQG1006 from the Guoqiang Institute at Tsinghua University X.Chen appreciates the support from the Shuimu Tsinghua Scholar Program of Tsinghua University and the Project funded by China Postdoctoral Science Foundation(2021TQ0161 and 2021M691709)
主 题:Lithium batteries Ion–solvent complexes Electrolyte solvation Electrolyte stability Density functional theory calculations Molecular dynamics simulations
摘 要:The building of safe and high energy-density lithium batteries is strongly dependent on the electrochemical performance of working electrolytes, in which ion–solvent interactions play a vital role. Herein, the ion–solvent chemistry is developed from mono-solvent to multi-solvent complexes to probe the solvation structure and the redox stability of practical electrolytes. The decrease in energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of solvents in lithium-ion solvation shells becomes less significant as the number of coordinated solvents increases, but both the HOMO and LUMO energies of the coordinated solvents remain lower than those of free solvents. A positive and approximately linear relationship was found between the decrease in the HOMO/LUMO energy and the average binding energy between Li+ and the coordinated solvents. A binary-solvent complex model further highlight the significant importance of the electrolyte solvation environment in regulating electrolyte stability, and it is essential to consider electrolyte stability from the perspective of ion–solvent complexes. These fresh insights into the energy chemistry of multi-solvent complexes provide critical references for electrolyte design and cell optimization.