咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Multi-Attribute Preferences Mi... 收藏

Multi-Attribute Preferences Mining Method for Group Users with the Process of Noise Reduction

为有噪音减小的过程的组用户的多属性偏爱采矿方法

作     者:Qing-Mei Tan Xu-Na Wang Qing-Mei Tan;Xu-Na Wang

作者机构:College of Economic and ManagementNanjing University of Aeronautics and AstronauticsNanjing 211106China Research Base for Civilian-Military Integration Development in Jiangsu ProvinceNanjing 211106China 

出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))

年 卷 期:2021年第36卷第4期

页      面:944-960页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:the Major Project of National Social Science Foundation of China under Grant No.20&ZD127 

主  题:preferences mining group user multi-attribute noise reduction noise interference 

摘      要:Traditional researches on user preferences mining mainly explore the user’s overall preferences on the project,but ignore that the fundamental motivation of user preferences comes from their attitudes on some attributes of the *** addition,traditional researches seldom consider the typical preferences combination of group users,which may have influence on the personalized service for group *** solve this problem,a method with noise reduction for group user preferences mining is proposed,which focuses on mining the multi-attribute preference tendency of group ***,both the availability of data and the noise interference on preferences mining are considered in the algorithm *** the process of generating group user preferences,a new path is used to generate preference keywords so as to reduce the noise ***,the Gibbs sampling algorithm is used to estimate the parameters of the ***,using the user comment data of several online shopping websites as experimental objects,the method is used to mine the multi-attribute preferences of different *** proposed method is compared with other methods from three aspects of predictive ability,preference mining ability and preference topic *** results show that the method is significantly better thap other existing methods.

读者评论 与其他读者分享你的观点