咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Γ-inverses of Bounded Linear O... 收藏

Γ-inverses of Bounded Linear Operators

Γ-inverses of Bounded Linear Operators

作     者:Xiao Ming XU Hong Ke DU Xiao Chun FANG 

作者机构:School of ScienceShanghai Institute of Technology College of Mathematics and Information ScienceShaanxi Normal University Department of MathematicsTongji University 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2014年第30卷第4期

页      面:675-680页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:supported by Research Foundation of Shanghai Institute of Technology for Talented Scholars(Grant No.1020K126021-YJ2012-21) Special Foundation for Excellent Young College and University Teachers(Grant No.405ZK12YQ21-ZZyyy12021) supported by National Natural Science Foundation of China(Grant No.11171197) supported by National Natural Science Foundation of China(Grant No.11071188) 

主  题:Generalized inverse F-inverse Moore-Penrose inverse 

摘      要:Let B(Н) be the algebra of all the bounded linear operators on a Hilbert space Н. For A, P and Q in B(Н), if there exists an operator X ∈ B(Н) such that APXQA = A, XQAPX = X, (QAPX)^* = QAPX and (XQAP)^* = XQAP, then X is said to be the F-inverse of A associated with P and Q, and denoted by A^+P,Q. In this note, we present some necessary and sufficient conditions for which A^+P,Q exists, and give an explicit representation of A^+PQ (if A^+P,Q exists).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分