咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Comparison of Khasi Speech Rep... 收藏

Comparison of Khasi Speech Representations with Different Spectral Features and Hidden Markov States

Comparison of Khasi Speech Representations with Different Spectral Features and Hidden Markov States

作     者:Bronson Syiem Sushanta Kabir Dutta Juwesh Binong Lairenlakpam Joyprakash Singh Bronson Syiem;Sushanta Kabir Dutta;Juwesh Binong;Lairenlakpam Joyprakash Singh

作者机构:Department of Electronics and Communication EngineeringNorth-Eastern Hill UniversityShillong 793022 

出 版 物:《Journal of Electronic Science and Technology》 (电子科技学刊(英文版))

年 卷 期:2021年第19卷第2期

页      面:155-162页

核心收录:

学科分类:0711[理学-系统科学] 07[理学] 

基  金:supported by the Visvesvaraya Ph.D.Scheme for Electronics and IT students launched by the Ministry of Electronics and Information Technology(MeiTY) Government of India under Grant No.PhD-MLA/4(95)/2015-2016 

主  题:Acoustic model(AM) Gaussian mixture model(GMM) hidden Markov model(HMM) language model(LM) linear predictive coding(LPC) linear prediction cepstral coefficient(LPCC) Mel frequency cepstral coefficient(MFCC) perceptual linear prediction(PLP) 

摘      要:In this paper,we present a comparison of Khasi speech representations with four different spectral features and novel extension towards the development of Khasi speech *** four features include linear predictive coding(LPC),linear prediction cepstrum coefficient(LPCC),perceptual linear prediction(PLP),and Mel frequency cepstral coefficient(MFCC).The 10-hour speech data were used for training and 3-hour data for *** each spectral feature,different hidden Markov model(HMM)based recognizers with variations in HMM states and different Gaussian mixture models(GMMs)were *** performance was evaluated by using the word error rate(WER).The experimental results show that MFCC provides a better representation for Khasi speech compared with the other three spectral features.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分