咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Dynamic weighted voting for mu... 收藏

Dynamic weighted voting for multiple classifier fusion:a generalized rough set method

Dynamic weighted voting for multiple classifier fusion:a generalized rough set method

作     者:Sun Liang Han Chongzhao 

作者机构:School of Electronic & Information Engineering Xi'an Jiaotong Univ. Xi'an 710049 P. R. China Inst. of Information Science & Technology Zhengzhou 450001 P. R. China 

出 版 物:《Journal of Systems Engineering and Electronics》 (系统工程与电子技术(英文版))

年 卷 期:2006年第17卷第3期

页      面:487-494页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:This project was supported by the National Basic Research Programof China (2001CB309403) 

主  题:multiple classifier fusion dynamic weighted voting generalized rough set hyperspectral. 

摘      要:To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分