咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Isotropic bodies and Bourgain'... 收藏

Isotropic bodies and Bourgain's problem

Isotropic bodies and Bourgain's problem

作     者:HE Binwu & LENG Gangsong Department of Mathematics, Shanghai University, Shanghai 200444, China 

作者机构:1. Department of Mathematics Shanghai University 200444 Shanghai China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2005年第48卷第5期

页      面:666-679页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:This work was supported by the National Natural Science Foundation of China(Grant No.10271071) 

主  题:convex body isotropic body isotropic constant Bourgain’s problem spherical section function. 

摘      要:Let K (?) Rn be a convex body of volume 1 whose barycenter is at the origin, LK be the isotropic constant of K. Finding the least upper bound of LK , being called Bourgain s problem, is a well known open problem in the local theory of Banach space. The best estimate known today is LK cn1/4 log n, recently shown by Bourgain, for an arbitrary convex body in any finite dimension. Utilizing the method of spherical section function, it is proven that if K is a convex body with volume 1 and r1Bn2 (?) K (?) r2Bn2,(r1≥1/2, r2≤(?)/2), then (?) ≤ (?) and find the conditions with equality. Further, the geometric characteristic of isotropic bodies is shown.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分