咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Extreme learning-based non-lin... 收藏

Extreme learning-based non-linear model predictive controller for an autonomous underwater vehicle:simulation and experimental results

作     者:Biranchi Narayan Rath Bidyadhar Subudhi 

作者机构:Department of Electrical EngineeringNational Institute of Technology RourkelaRourkela 769008India School of Electrical SciencesIndian Institute of Technology GoaPondaGoa-401403India 

出 版 物:《IET Cyber-Systems and Robotics》 (智能系统与机器人(英文))

年 卷 期:2019年第1卷第2期

页      面:45-54页

核心收录:

学科分类:0808[工学-电气工程] 08[工学] 081203[工学-计算机应用技术] 081402[工学-结构工程] 0824[工学-船舶与海洋工程] 0835[工学-软件工程] 0814[工学-土木工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0701[理学-数学] 081102[工学-检测技术与自动化装置] 0812[工学-计算机科学与技术(可授工学、理学学位)] 0702[理学-物理学] 0801[工学-力学(可授工学、理学学位)] 0823[工学-交通运输工程] 

主  题:Extreme underwater autonomous 

摘      要:In this study,an extreme learning-based non-linear model predictive controller(NMPC)is proposed for path following planning of an autonomous underwater vehicle(AUV)using horizontal *** proposed controller comprises a kinematic controller and a dynamic *** kinematic controller is designed by using back-stepping approach whilst the dynamic controller is designed by employing the NMPC *** dynamics of the AUV is identified in real-time by employing an extreme learning machine(ELM)*** view of achieving improved performance of the ELM structure,its hidden layer parameters are optimally determined by applying Jaya optimisation *** resulting ELM model is then used to design a NMPC considering the constraint on rudder *** tracking performance of the proposed controller is compared with that of two recently reported control algorithms namely,H∞state feedback controller and inverse optimal self-tuning proportional-integral-derivative(PID)*** proposed controller is implemented using MATLAB and then in real-time on a prototype AUV developed in the authors’*** both the simulation and experimental results obtained,it is observed that the proposed controller exhibits superior tracking performance compared to both H∞state feedback controller and inverse optimal self-tuning PID controller.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分