咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Improved Approximation of Layo... 收藏

Improved Approximation of Layout Problems on Random Graphs

Improved Approximation of Layout Problems on Random Graphs

作     者:Kevin K. H. Cheung Patrick Girardet 

作者机构:School of Mathematics and Statistics Carleton University Ottawa ON Canada Department of Mathematics University of California San Diego La Jolla CA USA 

出 版 物:《Open Journal of Discrete Mathematics》 (离散数学期刊(英文))

年 卷 期:2020年第10卷第1期

页      面:13-30页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Graph Arrangements Random Graphs Approximation Algorithms Undirected Graphs Directed Acyclic Graphs 

摘      要:Inspired by previous work of Diaz, Petit, Serna, and Trevisan (Approximating layout problems on random graphs, Discrete Mathematics, 235, 2001, 245-253), we show that several well-known graph layout problems are approximable to within a factor arbitrarily close to 1 of the optimal with high probability for random graphs drawn from an Erdös-Renyi distribution with appropriate sparsity conditions using only elementary probabilistic analysis. Moreover, we show that the same results hold for the analogous problems on directed acyclic graphs.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分