咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Handwritten digit recognition ... 收藏

Handwritten digit recognition based on ghost imaging with deep learning

Handwritten digit recognition based on ghost imaging with deep learning

作     者:Xing He Sheng-Mei Zhao Le Wang 何行;赵生妹;王乐

作者机构:Institute of Signal Processing and TransmissionNanjing University of Posts and TelecommunicationsNanjing 210003China Key Laboratory of Broadband Wireless Communication and Sensor Network Technology(Ministry of Education)Nanjing 210003China 

出 版 物:《Chinese Physics B》 (中国物理B(英文版))

年 卷 期:2021年第30卷第5期

页      面:367-372页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 080203[工学-机械设计及理论] 0835[工学-软件工程] 0802[工学-机械工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:the National Natural Science Foundation of China(Grant Nos.61871234 and 11847062) 

主  题:ghost imaging handwritten digit recognition ghost handwritten recognition deep learning 

摘      要:We present a ghost handwritten digit recognition method for the unknown handwritten digits based on ghost imaging(GI)with deep neural network,where a few detection signals from the bucket detector,generated by the cosine transform speckle,are used as the characteristic information and the input of the designed deep neural network(DNN),and the output of the DNN is the *** results show that the proposed scheme has a higher recognition accuracy(as high as 98%for the simulations,and 91%for the experiments)with a smaller sampling ratio(say 12.76%).With the increase of the sampling ratio,the recognition accuracy is *** with the traditional recognition scheme using the same DNN structure,the proposed scheme has slightly better performance with a lower complexity and non-locality *** proposed scheme provides a promising way for remote sensing.

读者评论 与其他读者分享你的观点