New Methods to Solve Fuzzy Shortest Path Problems
模糊最短路问题的新方法(英文)作者机构:南京大学商学院南京210093 东南大学经济管理学院南京210096
出 版 物:《Journal of Southeast University(English Edition)》 (东南大学学报(英文版))
年 卷 期:2001年第17卷第1期
页 面:18-21页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070105[理学-运筹学与控制论] 0701[理学-数学]
基 金:theNationalNatureScienceFoundationofChina ( 79970 0 96 )
主 题:triangular fuzzy number fuzzy shortest path ranking function
摘 要:This paper discusses the problem of finding a shortest path from a fixed origin s to a specified node t in a network with arcs represented as typical triangular fuzzy numbers (TFN). Because of the characteristic of TFNs, the length of any path p from s to t , which equals the extended sum of all arcs belonging to p , is also TFN. Therefore, the fuzzy shortest path problem (FSPP) becomes to select the smallest among all those TFNs corresponding to different paths from s to t (specifically, the smallest TFN represents the shortest path). Based on Adamo s method for ranking fuzzy number, the pessimistic method and its extensions - optimistic method and λ combination method, are presented, and the FSPP is finally converted into the crisp shortest path problems.