r-Matrix Structure for a Restricted Flow with Bargmann Constraint
r-Matrix Structure for a Restricted Flow with Bargmann Constraint作者机构:Department of Mathematics Zhengzhou University Zhengzhou 450052 China
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2005年第44卷第3X期
页 面:393-395页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0704[理学-天文学] 0701[理学-数学] 0702[理学-物理学]
基 金:国家自然科学基金 国家重点基础研究发展计划(973计划)
主 题:Poisson bracket Lax representation r-matrix Liouville integrability
摘 要:This paper deals with the integrability of a finite-dimensional Hamiltonian system linked with the generalized coupled KdV hierarchy. For this purpose the associated Lax representation is presented after an elementary calculation. It is shown that the Lax representation enjoys a dynamical r-matrix formula instead of a classical one in the Poisson bracket on R2N. Consequently the resulting system is proved to be completely integrable in view of its r-matrix structure.