Nonexistence of the NNSC-cobordism of Bartnik data
Nonexistence of the NNSC-cobordism of Bartnik data作者机构:Key Laboratory of Pure and Applied MathematicsSchool of Mathematical SciencesPeking UniversityBeijing 100871China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2021年第64卷第7期
页 面:1357-1372页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(National Key R&D Program of China)(Grant No.11731001) Postdoctoral Science Foundation of China(Grant No.2020M680171)
主 题:cobordism scalar curvature mean curvature
摘 要:In this paper,we consider the problem of the nonnegative scalar curvature(NNSC)-cobordism of Bartnik data(∑_(1)^(n-1),γ_(1),H_(1))and(∑_(2)^(n-1),γ_(2),H_(2)).We prove that given two metricsγ_(1)andγ_(2)on S^(n-1)(3≤n≤7)with H_(1)fixed,then(S^(n-1),γ_(1),H_(1))and(S^(n-1),γ_(2),H_(2))admit no NNSC-cobordism provided the prescribed mean curvature H2 is large enough(see Theorem 1.3).Moreover,we show that for n=3,a much weaker condition that the total mean curvature∫_(s^(2))H_(2)dpγ_(2)is large enough rules out NNSC-cobordisms(see Theorem 1.2);if we require the Gaussian curvature ofγ_(2)to be positive,we get a criterion for nonexistence of the trivial NNSCcobordism by using the Hawking mass and the Brown-York mass(see Theorem 1.1).For the general topology case,we prove that(∑_(1)^(n-1),γ_(1),0)and(∑_(2)^(n-1),γ_(2),H_(2))admit no NNSC-cobordism provided the prescribed mean curvature H_(2)is large enough(see Theorem 1.5).