A dual population multi-operator genetic algorithm for flight deck operations scheduling problem
A dual population multi-operator genetic algorithm for flight deck operations scheduling problem作者机构:Aeronautical Foundation CollegeNaval Aviation UniversityYantai 264001China Aeronautical Operations CollegeNaval Aviation UniversityYantai 264001China Unit 91404 of the PLAQinhuangdao 066000China
出 版 物:《Journal of Systems Engineering and Electronics》 (系统工程与电子技术(英文版))
年 卷 期:2021年第32卷第2期
页 面:331-346页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 082601[工学-武器系统与运用工程] 081104[工学-模式识别与智能系统] 08[工学] 0826[工学-兵器科学与技术] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:supported by the National Natural Science Foundation of China(61671462)
主 题:genetic algorithm project scheduling flight deck operation transfer times of resources
摘 要:It is of great significance to carry out effective scheduling for the carrier-based aircraft flight deck *** this paper,the precedence constraints and resource constraints in flight deck operations are analyzed,then the model of the multi-aircraft integrated scheduling problem with transfer times(MAISPTT)is established.A dual population multi-operator genetic algorithm(DPMOGA)is proposed for solving the *** the algorithm,the dual population structure and random-key encoding modified by starting/ending time of operations are adopted,and multiple genetic operators are self-adaptively used to obtain better *** order to conduct the mapping from encodings to feasible schedules,serial and parallel scheduling generation scheme-based decoding operators,each of which adopts different justified mechanisms in two separated populations,are *** superiority of the DPMOGA is verified by simulation experiments.