The balance property in neural network modelling
作者机构:RiskLabDepartment of MathematicsETH ZurichZurichSwitzerland
出 版 物:《Statistical Theory and Related Fields》 (统计理论及其应用(英文))
年 卷 期:2022年第6卷第1期
页 面:1-9页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Balance property unbiased binary classification logistic regression neural network classification tree
摘 要:In estimation and prediction theory,considerable attention is paid to the question of hav-ing unbiased estimators on a global population *** developments in neural network modelling have mainly focused on accuracy on a granular sample level,and the question of unbi-asedness on the population level has almost completely been neglected by that *** discuss this question within neural network regression models,and we provide methods of receiving unbiased estimators for these models on the global population level.