Investigation on the penetration of jacketed rods with striking velocities of 0.9-3.3 km/s into semi-infinite targets
Investigation on the penetration of jacketed rods with striking velocities of 0.9-3.3 km/s into semi-infinite targets作者机构:National Key Laboratory of Transient PhysicsNanjing University of Science and TechnologyNanjing210094China China North Vehicle Research InstituteBeijing100072China Department of Criminal Science and TechnologyNanjing Forest Police CollegeNanjing210023China
出 版 物:《Defence Technology(防务技术)》 (Defence Technology)
年 卷 期:2022年第18卷第3期
页 面:476-489页
核心收录:
学科分类:08[工学] 082603[工学-火炮、自动武器与弹药工程] 0826[工学-兵器科学与技术]
基 金:supported by the National Natural Science Foundation of China(Grant nos.:11672138,11602113) Foundation of National Key Lab.of Transient Physics(Grant no.:6142604180407,JCKYS2020606004)
主 题:Jacketed rod Semi-infinite target Damage mechanism Penetration performance
摘 要:In this study, a combined experimental, numerical and theoretical investigation is conducted on the penetration of semi-infinite 4340 steel targets by a homogeneous 93 W rod and two types of jacketed rods with striking velocities of 0.9-3.3 km/s. The results show that the jacketed rods produced typical“co-erosion damage at all test velocities, except for the 93 W/1060 Al jacketed rod, which switched from an early “bi-erosion damage to later “co-erosion damage at a striking velocity of 936 m/s. However, the homogeneous 93 W rod always forms a large mushroom head during the penetration process. The damage mechanisms of these two types of jacketed rods differ for striking velocities of 0.9-2.0 km/s, but this difference gradually decreases with increased striking velocity. For velocities of 2.0-3.3 km/s, all three types of projectiles exhibit typical hydrodynamic penetration characteristics, and the damage mechanisms of the two types of jacketed rods are almost identical. For the same initial kinetic energy, the penetration performance of the jacketed rods is distinctly superior to that of the homogeneous 93 W *** with jacket density, jacket strength shows a more significant influence on the damage mechanism and penetration performance of the jacketed rod. Finally, an existing theoretical prediction model of the penetration depth of jacketed rods on semi-infinite targets in the co-erosion mode is modified. It transpires that-in terms of penetration depth-the modified theoretical model is in good agreement with the experimental and numerical observations for 93 W/TC4 and 93 W/1060 Al jacketed rods penetrating semi-infinite 4340 steel targets.