咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Series Representation of Joint... 收藏

Series Representation of Jointly S˛S Distribution via Symmetric Covariations

作     者:Yujia Ding Qidi Peng 

作者机构:Institute of Mathematical SciencesClaremont Graduate University1237 N.Dartmouth Ave.ClaremontCA 91711USA 

出 版 物:《Communications in Mathematics and Statistics》 (数学与统计通讯(英文))

年 卷 期:2021年第9卷第2期

页      面:203-238页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Symmetricα-stable random vector Symmetric covariation Generalized fractional derivative Series representation 

摘      要:We introduce the notion of symmetric covariation,which is a new measure of dependence between two components of a symmetricα-stable random vector,where the stability parameterαmeasures the heavy-tailedness of its *** covariation that exists only whenα∈(1,2],symmetric covariation is well defined for allα∈(0,2].We show that symmetric covariation can be defined using the proposed generalized fractional derivative,which has broader usages than those involved in this *** properties of symmetric covariation have been *** are either similar to or more general than those of the covariance functions in the Gaussian *** main contribution of this framework is the representation of the characteristic function of bivariate symmetricα-stable distribution via convergent series based on a sequence of symmetric *** series representation extends the one of bivariate Gaussian.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分