Quantile Regression for Thinning-based INAR(1)Models of Time Series of Counts
为薄底的 INAR (1 ) 的 Quantile 回归计数的时间系列当模特儿作者机构:School of MathematicsJilin UniversityChangchun 130012China School of EconomicsLiaoning UniversityShenyang 110036China School of Mathematics and StatisticsChangchun University of TechnologyChangchun 130012China
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2021年第37卷第2期
页 面:264-277页
核心收录:
学科分类:02[经济学] 0202[经济学-应用经济学] 020208[经济学-统计学] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 070103[理学-概率论与数理统计] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(No.11871028,11731015,12001229,11901053) Natural Science Foundation of Jilin Province(No.20180101216JC)
主 题:INAR(1)process quantile regression parameter estimation jittering
摘 要:In this paper,we develop the quantile regression(QR)estimation for the first-order integer-valued autoregressive(INAR(1))models by defining the smoothing INAR(1)*** method is used to derive the QR estimators for the autoregressive coefficient and the quantile of *** consistency and asymptotic normality of the proposed estimators are *** performances of the proposed estimation procedures are evaluated by Monte Carlo *** results show that the proposed procedures perform well for simulations and a real data application.