咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >基于深度学习的人体动作识别综述 收藏

基于深度学习的人体动作识别综述

Review of Human Action Recognition Based on Deep Learning

作     者:钱慧芳 易剑平 付云虎 QIAN Huifang;YI Jianping;FU Yunhu

作者机构:西安工程大学电子信息学院西安710048 

出 版 物:《计算机科学与探索》 (Journal of Frontiers of Computer Science and Technology)

年 卷 期:2021年第15卷第3期

页      面:438-455页

核心收录:

学科分类:1305[艺术学-设计学(可授艺术学、工学学位)] 13[艺术学] 081104[工学-模式识别与智能系统] 08[工学] 0804[工学-仪器科学与技术] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 

基  金:陕西省科技厅计划项目(2019GY-036) 

主  题:人体动作识别 2D卷积神经网络(2D CNN) 3D卷积神经网络(3D CNN) 时空分解网络 预训练 

摘      要:人体动作识别是视频理解领域的重要课题之一,在视频监控、人机交互、运动分析、视频信息检索等方面有着广泛的应用。根据骨干网络的特点,从2D卷积神经网络、3D卷积神经网络、时空分解网络三个角度介绍了动作识别领域的最新研究成果,并对三类方法的优缺点进行了定性的分析和比较。然后,从场景相关和时间相关两方面,全面归纳了常用的动作视频数据集,并着重探讨了不同数据集的特点及用法。随后,介绍了动作识别任务中常见的预训练策略,并着重分析了预训练技术对动作识别模型性能的影响。最后,从最新的研究动态出发,从细粒度动作识别、更精简的模型、小样本学习、无监督学习、自适应网络和视频超分辨动作识别六个角度一致探讨了动作识别未来发展的方向。

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分