咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >ClusterSLAM:A SLAM backend for... 收藏

ClusterSLAM:A SLAM backend for simultaneous rigid body clustering and motion estimation

ClusterSLAM: A SLAM backend for simultaneous rigid body clustering and motion estimation

作     者:Jiahui Huang Sheng Yang Zishuo Zhao Yu-Kun Lai Shi-Min Hu Jiahui Huang;Sheng Yang;Zishuo Zhao;Yu-Kun Lai;Shi-Min Hu

作者机构:BNRistDepartment of Computer Science and TechnologyTsinghua UniversityBeijing 100084China Alibaba A.I.LabsHangzhou 311121China School of Computer Science and InformaticsCardiff UniversityCardiffCF243AAUK 

出 版 物:《Computational Visual Media》 (计算可视媒体(英文版))

年 卷 期:2021年第7卷第1期

页      面:87-101页

核心收录:

学科分类:08[工学] 080203[工学-机械设计及理论] 0802[工学-机械工程] 

基  金:supported by the National Key Technology R&D Program(Project No.2017YFB1002604) the Joint NSFC-DFG Research Program(Project No.61761136018) the National Natural Science Foundation of China(Project No.61521002) 

主  题:dynamic SLAM motion segmentation scene perception 

摘      要:We present a practical backend for stereo visual SLAM which can simultaneously discover individual rigid bodies and compute their motions in dynamic *** recent factor graph based state optimization algorithms have shown their ability to robustly solve SLAM problems by treating dynamic objects as outliers,their dynamic motions are rarely *** this paper,we exploit the consensus of 3 D motions for landmarks extracted from the same rigid body for clustering,and to identify static and dynamic objects in a unified ***,our algorithm builds a noise-aware motion affinity matrix from landmarks,and uses agglomerative clustering to distinguish rigid *** decoupled factor graph optimization to revise their shapes and trajectories,we obtain an iterative scheme to update both cluster assignments and motion estimation *** on both synthetic scenes and KITTI demonstrate the capability of our approach,and further experiments considering online efficiency also show the effectiveness of our method for simultaneously tracking ego-motion and multiple objects.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分