咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Predicting stable crystalline ... 收藏

Predicting stable crystalline compounds using chemical similarity

作     者:Hai-Chen Wang Silvana Botti Miguel A.L.Marques 

作者机构:Institut für PhysikMartin-Luther-Universität Halle-Wittenberg06120 Halle(Saale)Germany Institut für Festkörpertheorie und-OptikFriedrich-Schiller-Universität Jena and European Theoretical Spectroscopy FacilityMax-Wien-Platz 107743 JenaGermany 

出 版 物:《npj Computational Materials》 (计算材料学(英文))

年 卷 期:2021年第7卷第1期

页      面:99-107页

核心收录:

学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 0703[理学-化学] 070301[理学-无机化学] 

基  金:S.B.and M.A.L.M.acknowledge financial support from the DFG through Projects MA 6787/1-1 and BO 4280/8 

主  题:stability similarity crystalline 

摘      要:We propose an efficient high-throughput scheme for the discovery of stable crystalline *** approach is based on the transmutation of known compounds,through the substitution of atoms in the crystal structure with chemically similar *** concept of similarity is defined quantitatively using a measure of chemical replaceability,extracted by data-mining experimental *** this way we build 189,981 possible crystal phases,including 18,479 that are on the convex hull of *** resulting success rate of 9.72%is at least one order of magnitude better than the usual success rate of systematic high-throughput calculations for a specific family of materials,and comparable with speed-up factors of machine learning filtering *** a characterization of the set of 18,479 stable compounds,we calculate their electronic band gaps,magnetic moments,and *** approach,that can be used as a filter on top of any high-throughput scheme,enables us to efficiently extract stable compounds from tremendously large initial sets,without any initial assumption on their crystal structures or chemical compositions.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分