咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Fault-tolerant hamiltonian cyc... 收藏

Fault-tolerant hamiltonian cycles and paths embedding into locally exchanged twisted cubes

作     者:Weibei FAN Jianxi FAN Zhijie HAN Peng LI Yujie ZHANG Ruchuan WANG Weibei FAN;Jianxi FAN;Zhijie HAN;Peng LI;Yujie ZHANG;Ruchuan WANG

作者机构:College of ComputerNanjing University of Posts and TelecommunicationsNanjing 210023China School of Computer Science and TechnologySoochow UniversitySuzhou 215006China Jiangsu High Technology Research Key Laboratory for Wireless Sensor NetworksJiangsu ProvinceNanjing 210003China 

出 版 物:《Frontiers of Computer Science》 (中国计算机科学前沿(英文版))

年 卷 期:2021年第15卷第3期

页      面:59-74页

核心收录:

学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

基  金:supported by the National Natural Science Foundation of China(Grant Nos.U1905211,61872196,61902195 and 61972272) Natural Science Foundation of Jiangsu Province(BK20200753) Natural Science Fund for Colleges and Universities in Jiangsu Province(General Program,19KJB520045),NUPTSF(NY219151,NY219131) 

主  题:interconnection network fault-tolerant LeTQ_(s,t) hamiltonian cycle hamiltonian path 

摘      要:The foundation of information society is computer interconnection network,and the key of information exchange is communication *** interconnection networks with simple routing algorithm and high fault-tolerant performance is the premise of realizing various communication algorithms and ***,people can build complex interconnection networks by using very large scale integration(VLSI)*** exchanged twisted cubes,denoted by(s+t+1)-dimensional LeTQ_(s,t) which combines the merits of the exchanged hypercube and the locally twisted *** has been proved that the LeTQ_(s,t) has many excellent properties for interconnection networks,such as fewer edges,lower overhead and smaller *** is an important indicator to measure the performance of interconnection *** mainly study the fault tolerant Hamiltonian properties of a faulty locally exchanged twisted cube,LeTQ_(s,t)-(f_(v)+f_(e)),with faulty vertices f_(v) and faulty edges ***,we prove that an LeTQ_(s,t) can tolerate up to s-1 faulty vertices and edges when embedding a Hamiltonian cycle,for s≥2,t≥3,and s≤***,we also prove another result that there is a Hamiltonian path between any two distinct fault-free vertices in a faulty LeTQ_(s,t) with up to(s-2)faulty vertices and *** is,we show that LeTQ_(s,t) is(s-1)-Hamiltonian and(s-2)-*** results are proved to be optimal in this paper with at most(s-1)-fault-tolerant Hamiltonicity and(s-2)fault-tolerant Hamiltonian connectivity of LeTQ_(s,t).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分