Levi and Malcev Theorems for Finite-Dimensional Algebras from the Variety Defined by the Identities x^(2)=J(x,y,zu)=0
作者机构:Centro de Investigacion en CienciasUAEMCuernavacaMexico Omsk State Technical Universitypr.Mira 11OmskRussia
出 版 物:《Algebra Colloquium》 (代数集刊(英文版))
年 卷 期:2021年第28卷第1期
页 面:87-90页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:The second author thanks FAPESP(processo 2018/11292-6)of Brazil,and the Ministry of Education Science of the Russian Federation within the scope of the base part of a State Assignment within the sphere of scientific activity(Project No.2.9314.2017)for financial support The third author thanks SNI and FAPESP grant process 2015/07245-4 for support
主 题:Malcev theorem Levi factor splitting algebra binary Lie algebra
摘 要:We study the variety of binary Lie algebras defined by the identities x^(2)=J(x,y,zu)=0,where J(a,b,c)denotes the Jacobian of a,b,*** on previous work by Carrillo,Rasskazova,Sabinina and Grishkov,in the present article it is shown that the Levi and Malcev theorems hold for this variety of algebras.