Large m asymptotics for minimal partitions of the Dirichlet eigenvalue
Large m asymptotics for minimal partitions of the Dirichlet eigenvalue作者机构:Courant Institute of Mathematical SciencesNew York UniversityNew YorkNY 10012USA
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2022年第65卷第1期
页 面:1-8页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by National Science Foundation of USA(Grant Nos.DMS1501000 and DMS-1955249)
主 题:Dirichlet eigenvalue l1 minimal partition problem large m asymptotics
摘 要:In this paper,we study large m asymptotics of the l 1 minimal m-partition problem for the Dirichlet *** any smooth domainΩ⊂R^(n)such that|Ω|=1,we prove that the limit lim_(m→∞)l^(1)_(m)(Ω)=c 0 exists,and the constant c 0 is independent of the shape ofΩ.Here,l^(1)_(m)(Ω)denotes the minimal value of the normalized sum of the first Laplacian eigenvalues for any m-partition ofΩ.