Multiple P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurfaces in R^(2n)
在 2n 的紧缩的凸的 P 周期的对称的 hypersurfaces 上的多重 P 周期的对称的关上的特征作者机构:School of Mathematics and StatisticsWuhan UniversityWuhan 430072China
出 版 物:《Frontiers of Mathematics in China》 (中国高等学校学术文摘·数学(英文))
年 卷 期:2020年第15卷第6期
页 面:1155-1173页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11771341 12022111)
主 题:Compact convex hypersurfaces Hamiltonian system P-cyclic symmetric closed characteristics multiplicity
摘 要:Let k≥2 be an integer and P be a 2n×2n symplectic orthogonal matrix satisfying P^(k)=I_(2n) and ker(P^(j)-I_(2n)=0,1≤j*** any compact convex hypersurface ∑■R^(2n) with n≥2 which is P-cyclic symmetric,i.e.,x∈∑implies Px∈∑,we prove that if ∑ is(r,R)-pinched with R/r√(2k+2)/k,then there exist at least n geometrically distince P-cyclic symmetric closed characteristics on ∑ for a broad class of matrices P.