ON THE DIFFUSION PHENOMENON OF QUASILINEAR HYPERBOLIC WAVES
ON THE DIFFUSION PHENOMENON OF QUASILINEAR HYPERBOLIC WAVES作者机构:Department of Applied MathematicsSouth West Jiaotong University610031 ChengduChina Department of MathematicsUniversity of Wisconsin—M ilwaukeeMilwaukeeWisconsin 53201USA
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2000年第21卷第1期
页 面:63-70页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Asymptotic behavior of solutions Quasilinear hyperbolic and parabolic equations Diffusion phenomenon
摘 要:The authors consider the asymptotic behavior of solutions of the quasilinear hyperbolic equation with linear damping u_(tt)+u_(t)-div(a(u)u)=0,and show that,at least when n≥3,they tend,as t-+∞,to those of the nonlinear parabolic equation v_t-div(a(v)v)=0,in the sense that the norm||u(.,t)-v(.,t)||_(L∞(R^n))of the difference u-v decays faster than that of either u or *** provides another example of the diffusion phenomenon of nonlinear hyperbolic waves,first observed by Hsiao,*** Liu Taiping(see[1,2]).