The Hyers-Ulam Stability of a Functional Equation Deriving from Quadratic and Cubic Functions in Quasi-β-normed Spaces
The Hyers-Ulam Stability of a Functional Equation Deriving from Quadratic and Cubic Functions in Quasi-β-normed Spaces作者机构:School of Mathematical Sciences Qufu Normal University Qufu 273165 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2010年第26卷第12期
页 面:2335-2348页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by National Science Foundation of China (Grant Nos. 10626031 and 10971117) the Scientific Research Project of the Department of Education of Shandong Province (Grant No. J08LI15)
主 题:Hyers-Ulam stability quadratic mapping cubic mapping quasi-β-normed spaces (β,p)-Banach spaces
摘 要:In this paper, we investigate the Hyers-Ulam stability of the following function equation 2f(2x + y) + 2f(2x - y) = 4f(x + y) + 4f(x - y) + 4f(2x) + f(2y) - Sf(x) - 8f(y) in quasi-β-normed spaces.