Stability of switched nonlinear systems via extensions of LaSalle's invariance principle
Stability of switched nonlinear systems via extensions of LaSalle’s invariance principle作者机构:Institute of Systems Science Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing 100190 China
出 版 物:《Science in China(Series F)》 (中国科学(F辑英文版))
年 卷 期:2009年第52卷第1期
页 面:84-90页
核心收录:
学科分类:0711[理学-系统科学] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 070105[理学-运筹学与控制论] 081101[工学-控制理论与控制工程] 071101[理学-系统理论] 0811[工学-控制科学与工程] 0701[理学-数学] 071102[理学-系统分析与集成] 081103[工学-系统工程]
基 金:Supported partly by the National Natural Science Foundation of China (Grant Nos. 60221301 60674022 and 60736022)
主 题:LaSalle's invariance principle switched systems weak common Lyapunov function asymptotically stable
摘 要:This paper studies the extension of LaSalle's invariance principle for switched nonlinear systems. Unlike most existing results in which each switching mode in the system needs to be asymptotically stable, this paper allows the switching modes to be only stable. Under certain ergodicity assumptions of the switching signals, two extensions of LaSalle's invariance principle for global asymptotic stability of switched nonlinear systems are obtained using the method of common joint Lyapunov function.