咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Nonlinear Time Series Predicti... 收藏

Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization

Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization

作     者:XU Rui-Rui CHEN Tian-Lun GAO Cheng-Feng 

作者机构:Department of Physics Nankai University Tianjin 300071 China 

出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))

年 卷 期:2006年第45卷第4期

页      面:641-646页

核心收录:

学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学] 

基  金:The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China 

主  题:nonlinear time series prediction least squares support vector machine chaotic mutation evolu tionary programming 

摘      要:Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分