Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization
Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization作者机构:Department of Physics Nankai University Tianjin 300071 China
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2006年第45卷第4期
页 面:641-646页
核心收录:
学科分类:07[理学] 070201[理学-理论物理] 0702[理学-物理学]
主 题:nonlinear time series prediction least squares support vector machine chaotic mutation evolu tionary programming
摘 要:Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization. We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.