基于特征距离与极谐变换的图像检索算法
Image retrieval based on weighted feature distance and multivariate polar harmonic transform作者机构:荆楚理工学院计算机工程学院湖北荆门448000
出 版 物:《太赫兹科学与电子信息学报》 (Journal of Terahertz Science and Electronic Information Technology)
年 卷 期:2020年第18卷第6期
页 面:1080-1087页
学科分类:0711[理学-系统科学] 07[理学] 08[工学] 080401[工学-精密仪器及机械] 0804[工学-仪器科学与技术] 080402[工学-测试计量技术及仪器]
基 金:湖北省教育厅产学研合作基金资助项目(201801329007) 荆门市科技局科研基金资助项目(2019YDKY078)
主 题:图像检索 非下采样Shearlet变换 HSV空间 颜色特征 纹理特征 四元极谐变换 形状特征 加权距离
摘 要:为提高图像在数据集中的检索准确度,设计了基于加权距离与多元极谐变换的图像检索算法。在查询图像的色调-饱和度-亮度(HSV)空间内,提取其颜色特征;并引入贝塞尔K分布与非下采样Shearlet变换(NSST)方法得到查询图像的纹理特征,改善其对模糊与亮度变换等操作的稳健性;借助四元极谐变换(QPHT)机制,将图像的QPHT模系数视为形状特征,提高对噪声与几何变换的鲁棒性。通过融合这3种特征,分别计算查询图像与数据库图像之间对应的特征距离,并赋予三者对应的权重,以测量两幅图像之间的相似度,从而准确输出检索结果。测试数据显示,与当前基于内容的图像检索技术相比,所提算法具备更高的检索准确度和鲁棒性,在多种几何变换攻击下,仍可以准确检索出目标。